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As known to all, two mechanisms are involved in the radical-
scavenging process of phenolic antioxidants (ArOH). Taking
alkoxyl radical (RO•) as an example, the first mechanism is a
one-step H-atom-abstraction reaction (eq 1), while the second
is an electron-transfer reaction followed by a proton-transfer
process (eq 2).

Apparently, both pathways give the same net products.
However, to select or rationally design more effective ArOH,
we have to distinguish which pathway is preferred in a certain
chemical/biological system, because the physicochemical pa-
rameters characterizing the two mechanisms are different. The
first pathway is governed by O-H bond dissociation enthalpy
(BDE) to a large extent, whereas the second is mainly
determined by ionization potential (IP).1 The lower the param-
eters are, the faster the radical-scavenging reaction is.

Up to now, most of the studies focus on the first mechanism;2-4

hence it is very interesting to note that Nakanishi and co-workers
proposed that the second mechanism was favored in the radical-
scavenging process of (+)-catechin in acetonitrile (MeCN) or
propionitrile (EtCN).5 However, we have to indicate that the
radical-scavenging mechanism is solvent-dependent. For in-
stance, in hydrogen-accepting solvents, an intermolecular
hydrogen bond (IHB) can form between the phenolic hydroxyl
and the solvent molecule. The IHB will hamper the H-atom-
abstracting process and dramatically slow the one-step radical-
scavenging reaction.6,7 Moreover, it has been revealed that the
ArOH containing a catechol group, such as 3,5-di-tert-butyl-
catechol (DTBC), quercetin, and epicatechin, are more sensitive
to the solvent effects than the monophenolic counterparts, e.g.,
R-tocopherol (R-TOH) and 3,5-di-tert-butyl-4-methylphenol
(BHT).8,9 As MeCN and EtCN are strong hydrogen-accepting
solvents and (+)-catechin contains a catechol moiety, it is
reasonable to consider that the preferred mechanism observed
for (+)-catechin in Nakanishi et al’s experiment substantially

arises from the solvent effect, and one cannot deduce that in
non-hydrogen-bonding solvents, such as chloroform and hexane,
(+)-catechin also prefers the second pathway to scavenge
radicals.

Recently, Barclay and co-workers provided a series of rate
constants (ks) for monophenols and catechols to scavenge 2,2-
bis(4-tert-octylphenyl)-1-picrylhydrazyl radical (DOPPH•) and
peroxyl radical (ROO•) in hexane.10 The good linearity between
log ks and O-H BDE suggested that the first pathway was
favored in the system.10 However, it is still interesting to
investigate whether there exists linear correlation between log
ks and IP for the ArOH. Most of IPs have been calculated by
means of density functional theory (DFT) method B3LYP/6-
31G(d,p),11,12 and the IPs for 1,8-naphthalenediol (1,8-DIOL)
and 4-methoxy-1,8-naphthalenediol (4-MeO-1,8-DIOL) were
calculated using the same method (Table 1).13 It is interesting
to note that for the two kinds of radicals, the correlations
between logks and O-H BDE are better than those between
log ks and IP (Figures 1 and 2),14 suggesting the first mechanism
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RO• + ArOH f ROH + ArO• (1)

RO• + ArOH f RO- + ArOH•+ f ROH + ArO• (2)

TABLE 1: Relative O-H BDE (kcal/mol), IP (kcal/mol),
and Logarithm of Rate Constants of ArOH

substituted
phenols O-H BDEa IP logkDOPPH•c log kROO•d

4-CF3 3.3 9.54b -1.36
4-CN 2.3 10.82b 2.63
H 0 0b -0.66 3.63
4-Cl -1.5 -0.74b 0.04 3.50
4-Me -2.5 -8.20b 4.13
4-OH -5.8 -14.58b 4.83
4-OMe -6.1 -19.18b 2.38 4.84
catechol -10.0 -9.37b 3.26 5.74
1,8-DIOL -15.7 -25.58 5.49 6.63
4-MeO-1,8-DIOL -20.1 -34.08 6.30 6.78

a Data from ref 10.b Data from ref 11.c Logarithm of rate constants
for ArOH to scavenge 2,2-bis(4-tert-octylphenyl)-1-picrylhydrazyl
radical (DOPPH•).10 d Logarithm of rate constants for ArOH to
scavenge peroxyl radical (ROO•).10

Figure 1. Correlations between O-H BDE and logarithm of rate
constants (logks) for ArOH to scavenge DOPPH• (b, r ) -0.99309)
and ROO• (O, r ) -0.97466).
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was indeed more important than the second one in non-
hydrogen-bonding solvents, despite the diversity of the anti-
oxidant structure.15

In summary, the solvent effect must be taken into consider-
ation for interpreting the radical-scavenging mechanisms of
ArOH. Although (+)-catechin proceeds via the second mech-
anism to scavenge galvinoxyl or cumylperoxyl radical in
hydrogen-accepting solvents, the first mechanism may be
preferred in non-hydrogen-bonding solvents.
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